

High Frequency Trading and Market Making Strategies in a Multi Order Book Market

Gabriele Ciotti

University of Perugia

DLT Workshop — November 27, 2025

Why now? Fragmented markets: similar prices, *heterogeneous liquidity* (depth, latency, fees).

Key questions

- ➊ How to extend Avellaneda–Stoikov to N order books with a shared inventory q_t ?
- ➋ How to model **dynamic volatility** for optimal MM strategies?
- ➌ What is the *P&L-risk* frontier when coordinating quotes across order books? (work in progress)

Baseline: Avellaneda–Stoikov (single order book)

Objective: maximize terminal utility under risk aversion γ .

Key components:

- **Reservation price:** $r_t = S_t - q_t \gamma \sigma^2 (T - t)$
- **Optimal half–spread:** $\delta_t^* = f(\gamma, \sigma, T - t)$
- **Quotes:** $p_t^{ask} = r_t + \delta_t^*$, $p_t^{bid} = r_t - \delta_t^*$

Insight: Volatility σ is crucial but often assumed constant \rightarrow **important limitation**

Theoretical validation on real BTC data

Methodology: Test of the pure AS model on Bitcoin multi-exchange time series.

Rigorous setup:

- **Theoretical fidelity:** decreasing time horizon ($T - t$), full temporal spread, NO practical tweaks
- **Data:** tick-by-tick BTC from Binance, Coinbase, Kraken, Bitfinex, OKX
- **Robustness:** multi-seed validation (10 seeds) for statistical significance

Key results:

- **Inventory strategy** systematically outperforms symmetric (win rate 80%)
- **Risk control:** Inventory strategy shows lower drawdowns and managed inventory volatility

Empirical confirmation of AS theoretical validity in crypto high-frequency markets

Upgrade I: Dynamic volatility modeling

Problem: Avellaneda–Stoikov assumes constant $\sigma \rightarrow$ suboptimal under volatility clustering.

Our solution: multi-regime dynamic model

- **Rolling estimation:** $\hat{\sigma}_t$ from moving tick windows
- **Regime detection:** automatic identification of high/low vol periods
- **Real-time adaptation:** spreads adjust dynamically to σ_t

$$\delta_t^* = \delta_t^*(\gamma, \hat{\sigma}_t, T - t) \quad \text{instead of constant } \sigma$$

Dynamic vs Static Volatility: Cross-Exchange Analysis

Research Goal

Demonstrate the **methodological superiority** of dynamic volatility models over traditional static ones in the HFT market making context.

Methodology

- **Data:** Bitcoin 1-second HFT
- **Period:** July 2025 (1 month)
- **Rolling Window:** 120 seconds
- **Exchanges:** 5 main platforms

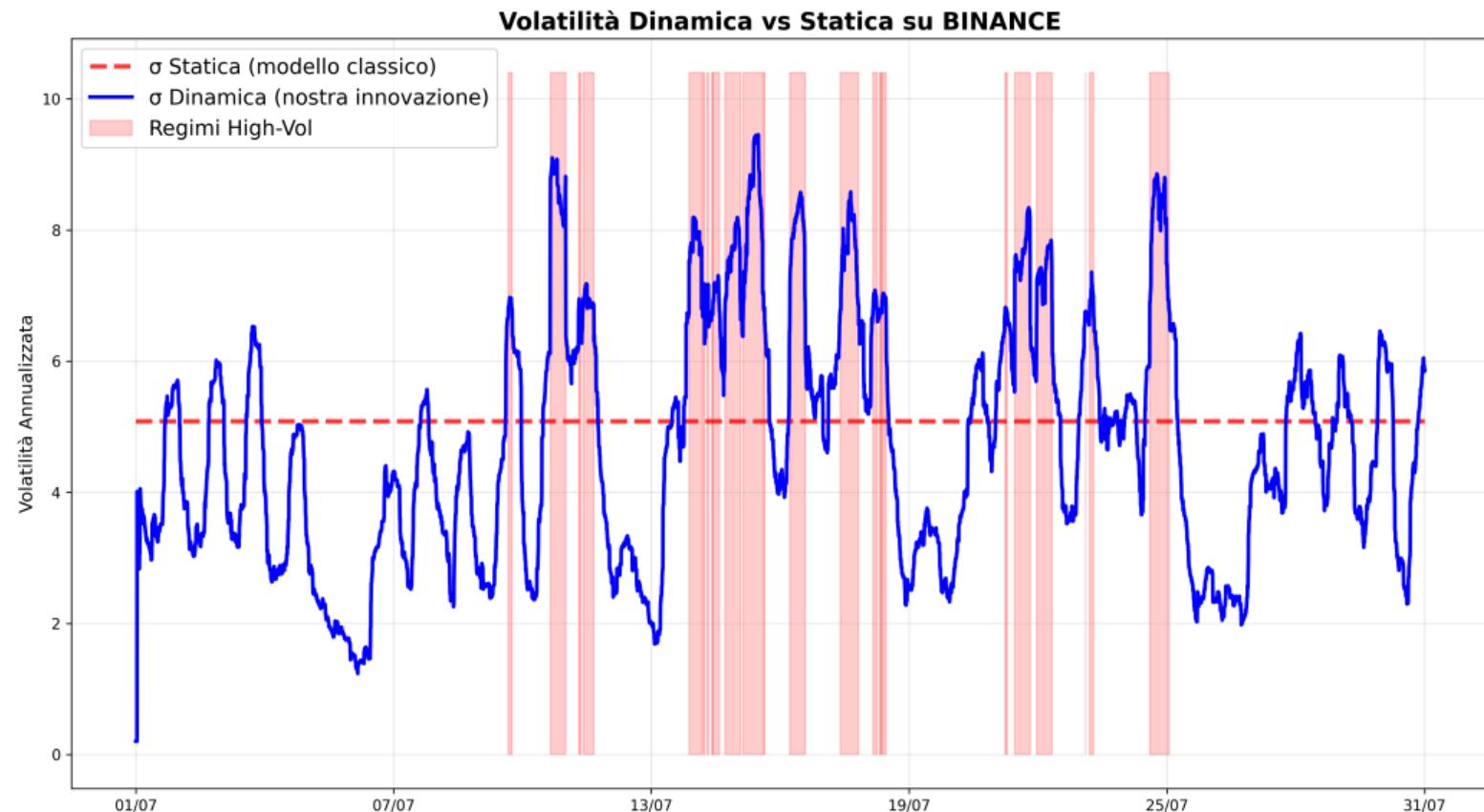
Hypotheses

Dynamic volatility:

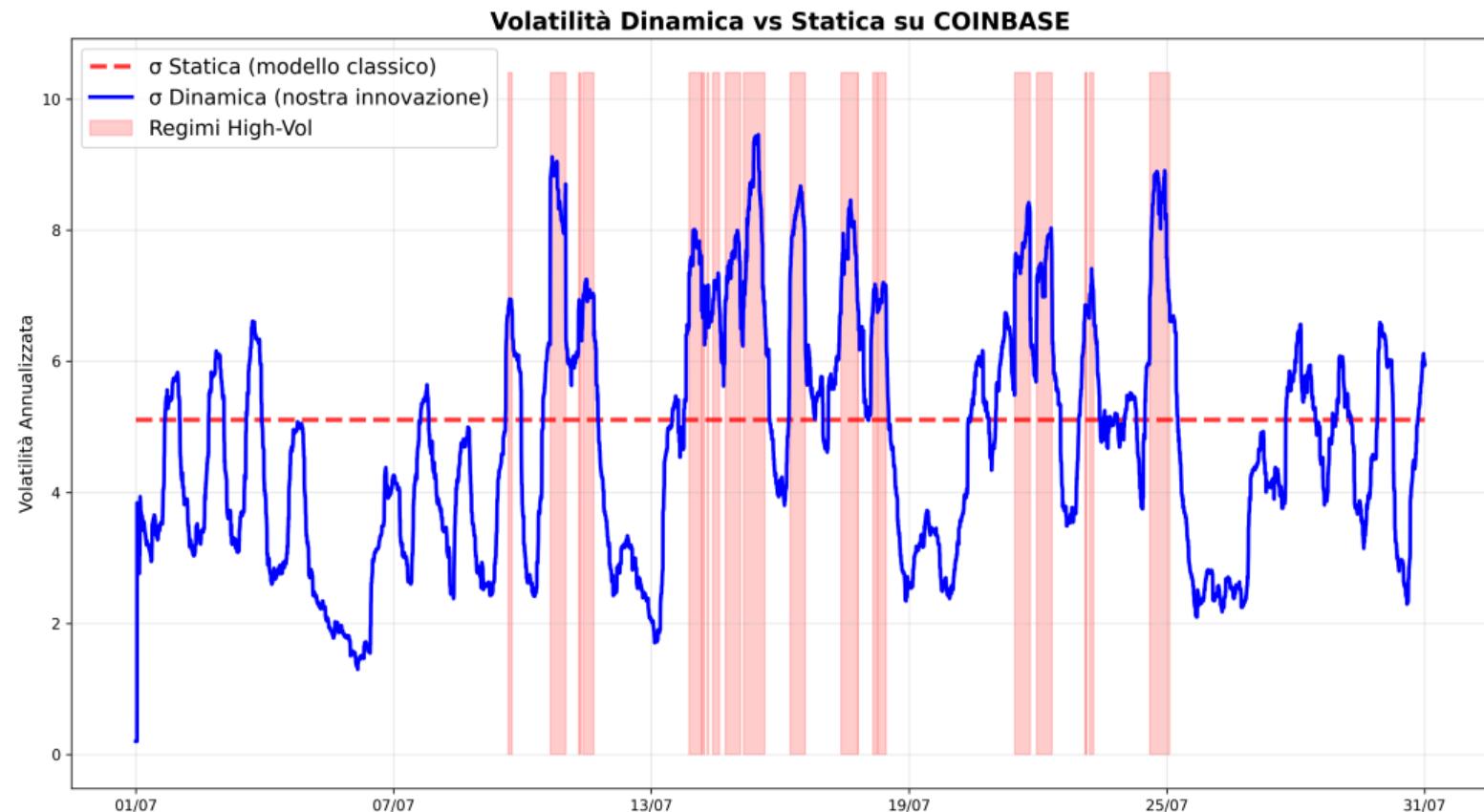
- Better captures **market regimes**
- Is more **responsive** to price shocks
- Shows **cross-exchange robustness**
- Improves trading performance

We now analyze results for each exchange...

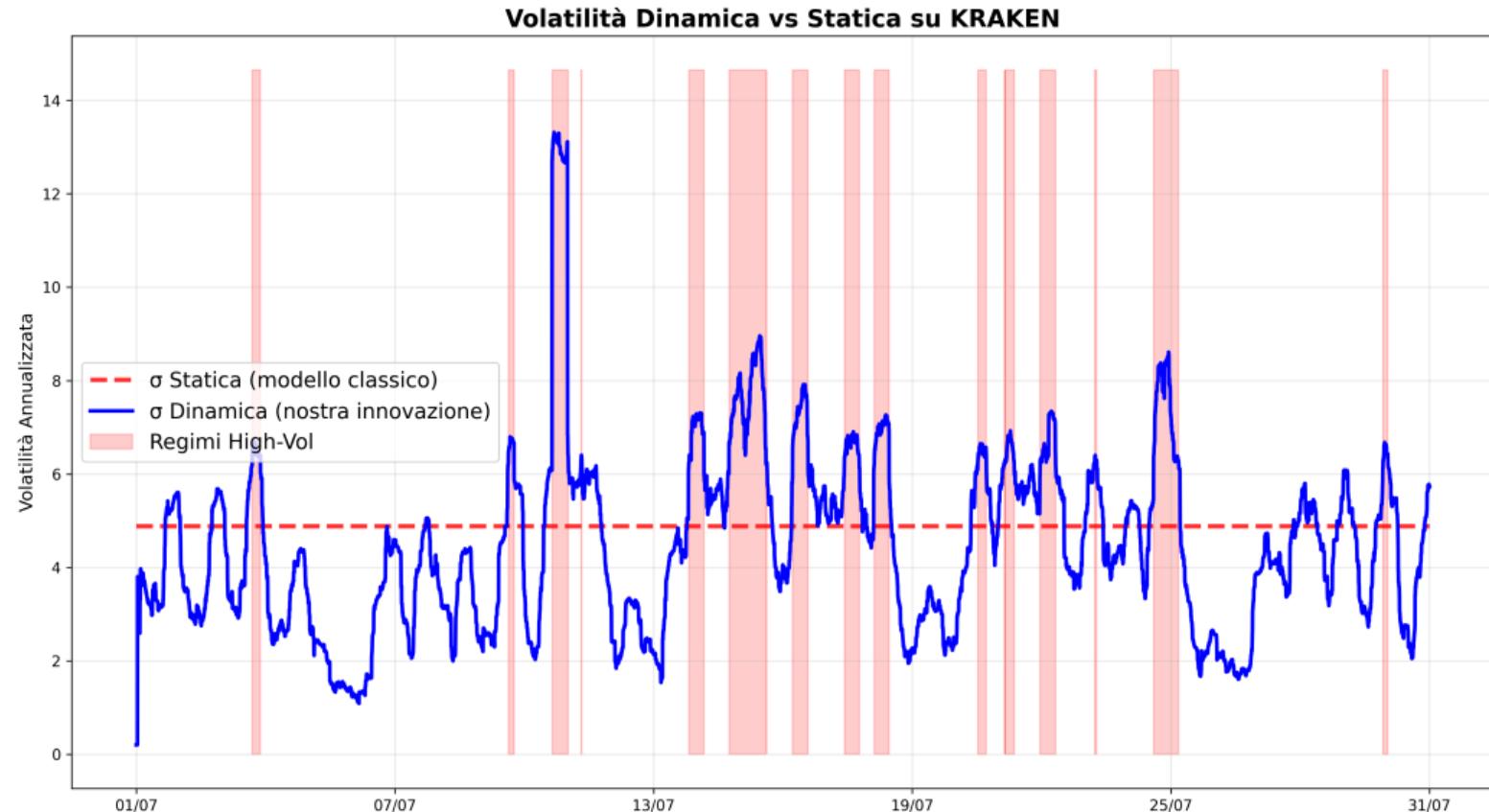
Exchange Analysis: BINANCE - Market Leader



Exchange Analysis: COINBASE

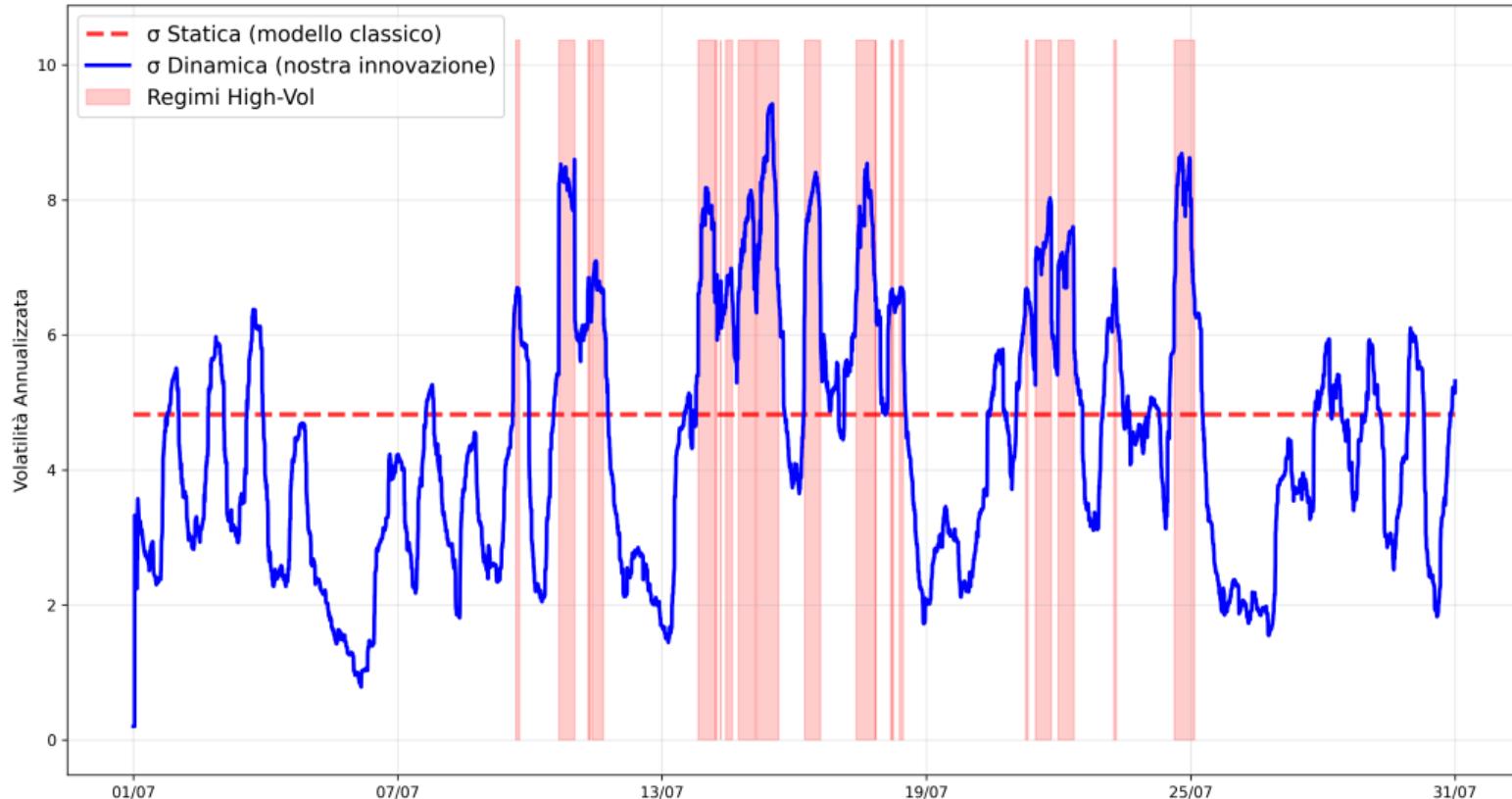


Exchange Analysis: KRAKEN

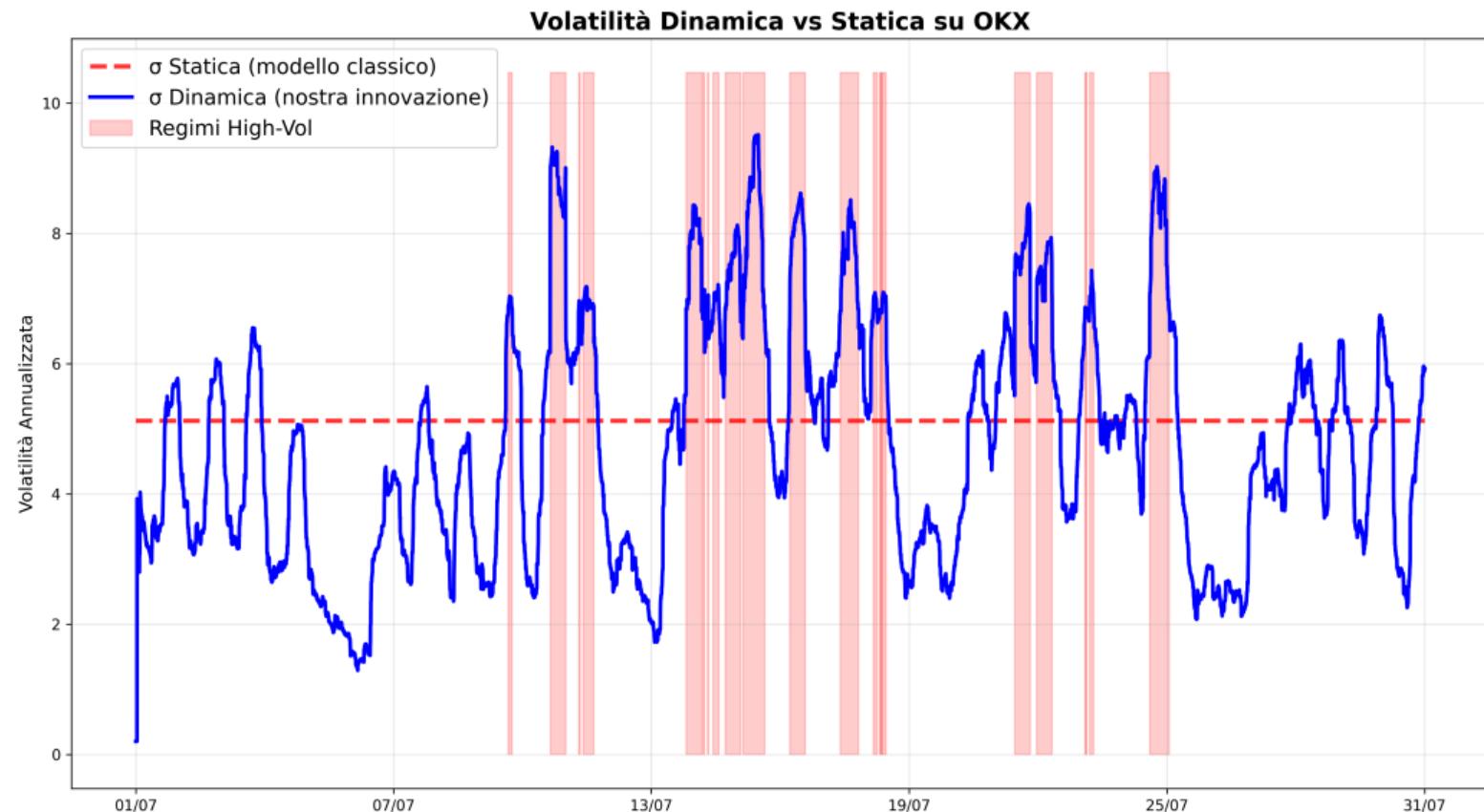


Exchange Analysis: BITFINEX

Volatilità Dinamica vs Statica su BITFINEX



Exchange Analysis: OKX



Cross-Exchange Summary: Empirical Validation

Main Results

Methodological robustness confirmed across all 5 main exchanges:

- **Synchronized temporal patterns** across exchanges
- **Systematic inadequacy** of the static model
- **Automatic identification** of volatility regimes
- **Universality** of the phenomenon (not exchange-specific)

Quantitative Metrics

- **Dynamic range:** 0.2 - 13.2
- **Static range:** 4.8 - 5.1
- **Average ratio:** $\sim 1.8x$

Practical Implications

- Improved Risk Management
- Dynamic Position Sizing
- Real-time Spread Optimization

Setup: Venues $v = 1, \dots, N$ with heterogeneous depth, latency, and fees + shared volatility $\hat{\sigma}_t$.

Joint control with dynamic volatility

$$\max_{\{\delta_{t,v}\}} \mathbb{E}[U(W_T)] \text{ subject to } \sigma_t = \hat{\sigma}_t$$

Smart routing:

- Priority to venues with higher fill probability
- Dynamic adjustment to current volatility regime
- Coordination of shared inventory q_t

Limitations & Future Developments

Current limitations:

- Volatility model still “local” (no cross-venue contagion)
- No feedback between MM strategy and realized volatility

Next steps:

- **Hawkes model:** self-exciting orders to capture clustering
- **Endogenous volatility:** MM impact on market volatility
- **Machine Learning:** Deep learning for advanced regime detection

Takeaways

- ① **Dynamic volatility is crucial**
- ② **Multi-venue coordination:** better risk management and fill rate
- ③ **Regime-awareness:** models must adapt to liquidity shifts

Thank you! Questions?

Essential references

- M. Avellaneda, S. Stoikov (2008). High-frequency trading in a limit order book. *Quantitative Finance*.
- Á. Cartea, S. Jaimungal, J. Penalva (2015). *Algorithmic and High-Frequency Trading*. Cambridge Univ. Press.
- J. Gatheral (2010). No-dynamic-arbitrage and market impact. *Quantitative Finance*.
- T. Ho, R. Macris (1984). Dealer Bid-Ask Quotes and Transaction Prices: An Empirical Study of Some AMEX Options. *Journal of Finance*.
- B. Biais, L. Glosten, C. Spatt (2005). Market Microstructure: A Survey of Microfoundations, Empirical Results, and Policy Implications. *Journal of Financial Markets*.
- J.-P. Fouque, G. Papanicolaou, K. Sircar (2000). Mean-Reverting Stochastic Volatility. *International Journal of Theoretical and Applied Finance*.
- J. Nakajima (2012). Bayesian Analysis of Multivariate Stochastic Volatility with Skew Distributions. arXiv:1212.5090.
- X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley (2006). Institutional Investors and Stock Market Volatility. *Quarterly Journal of Economics*.
- E. Chevalier, Y. Hafsi, V. Ly Vath (2024). Optimal Execution under Incomplete Information. arXiv:2411.04616.