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Motivation & Research Questions

Why now? Fragmented markets: similar prices, heterogeneous liquidity (depth, latency, fees).

Key questions
1 How to extend Avellaneda–Stoikov to N order books with a shared inventory qt?
2 How to model dynamic volatility for optimal MM strategies?
3 What is the P&L–risk frontier when coordinating quotes across order books? (work in

progress)
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Baseline: Avellaneda–Stoikov (single order book)

Objective: maximize terminal utility under risk aversion γ.

Key components:
Reservation price: rt = St − qt γ σ

2 (T − t)

Optimal half–spread: δ∗t = f (γ, σ,T − t)

Quotes: paskt = rt + δ∗t , pbidt = rt − δ∗t

Insight: Volatility σ is crucial but often assumed constant → important limitation
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Theoretical validation on real BTC data

Methodology: Test of the pure AS model on Bitcoin multi–exchange time series.

Rigorous setup:
Theoretical fidelity: decreasing time horizon (T − t), full temporal spread, NO practical
tweaks
Data: tick–by–tick BTC from Binance, Coinbase, Kraken, Bitfinex, OKX
Robustness: multi–seed validation (10 seeds) for statistical significance

Key results:
Inventory strategy systematically outperforms symmetric (win rate 80%)
Risk control: Inventory strategy shows lower drawdowns and managed inventory volatility

Empirical confirmation of AS theoretical validity in crypto high-frequency markets
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Upgrade I: Dynamic volatility modeling

Problem: Avellaneda–Stoikov assumes constant σ → suboptimal under volatility clustering.

Our solution: multi–regime dynamic model
Rolling estimation: σ̂t from moving tick windows
Regime detection: automatic identification of high/low vol periods
Real–time adaptation: spreads adjust dynamically to σt

δ∗t = δ∗t (γ, σ̂t ,T − t) instead of constant σ
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Dynamic vs Static Volatility: Cross–Exchange Analysis

Research Goal
Demonstrate the methodological superiority of dynamic volatility models over traditional static
ones in the HFT market making context.

Methodology
Data: Bitcoin 1-second HFT
Period: July 2025 (1 month)
Rolling Window: 120 seconds
Exchanges: 5 main platforms

Hypotheses
Dynamic volatility:

Better captures market regimes
Is more responsive to price shocks
Shows cross-exchange robustness
Improves trading performance

We now analyze results for each exchange...
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Exchange Analysis: BINANCE - Market Leader
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Exchange Analysis: COINBASE
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Exchange Analysis: KRAKEN
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Exchange Analysis: BITFINEX
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Exchange Analysis: OKX
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Cross–Exchange Summary: Empirical Validation

Main Results
Methodological robustness confirmed across all 5 main exchanges:

Synchronized temporal patterns across exchanges
Systematic inadequacy of the static model
Automatic identification of volatility regimes
Universality of the phenomenon (not exchange-specific)

Quantitative Metrics
Dynamic range: 0.2 - 13.2
Static range: 4.8 - 5.1
Average ratio: ∼1.8x

Practical Implications
Improved Risk Management
Dynamic Position Sizing
Real-time Spread Optimization

Dynamic volatility is methodologically superior
and universally applicable in HFT market making
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Upgrade II: Multi–order–book extension (work in progress)

Setup: Venues v = 1, . . . ,N with heterogeneous depth, latency, and fees + shared volatility σ̂t .

Joint control with dynamic volatility

max
{δt,v}

E[U(WT )] subject to σt = σ̂t

Smart routing:

Priority to venues with higher fill probability
Dynamic adjustment to current volatility regime
Coordination of shared inventory qt
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Limitations & Future Developments

Current limitations:
Volatility model still “local” (no cross–venue contagion)
No feedback between MM strategy and realized volatility

Next steps:
Hawkes model: self–exciting orders to capture clustering
Endogenous volatility: MM impact on market volatility
Machine Learning: Deep learning for advanced regime detection
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Takeaways

1 Dynamic volatility is crucial
2 Multi–venue coordination: better risk management and fill rate
3 Regime–awareness: models must adapt to liquidity shifts

Thank you! Questions?
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